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Abstract We report results of 3D discrete element method simulations aiming at investigating the role of the
boundary vibration in inducing frictional weakening in sheared granular layers. We study the role of different
vibration amplitudes applied at various shear stress levels, for a granular layer in the stick-slip regime and in
the steady-sliding regime. Results are reported in terms of friction drops and kinetic energy release associated
with frictional weakening events. We find that a larger vibration amplitude induces larger frictional weakening
events. The results show evidence of a threshold below which no induced frictional weakening takes place.
Friction drop size is found to be dependent on the shear stress at the time of vibration. A significant increase
in the ratio between the number of slipping contacts to the number of sticking contacts in the granular layer
is observed for large vibration amplitudes. These vibration-induced contact rearrangements enhance particle
mobilization and induce a friction drop and kinetic energy release. This observation provides some insight
into the grain-scale mechanisms of frictional weakening by boundary vibration in a dense sheared granular
layer. In addition to characterizing the basic physics of vibration-induced shear weakening, we are attempting
to understand how a fault fails in the earth under seismic wave forcing. This is the well-known phenomenon
of dynamic earthquake triggering. We believe that the granular physics are key to this understanding.
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1 Introduction

Granular materials are made up of many distinct grains that often interact with each other through dissipative
contact forces. They are abundant in daily life and their bulk behavior spans a broad range of states unlike that
of either solids or liquids. Among these behaviors is the transition from a solid-like to a fluid-like behavior
or vice versa. This transition is the basis of a broad spectrum of natural and geophysical processes as well as
industrial applications. In particular, earthquake initiation on mature faults that contain a granular fault gouge
(as a result of wear and frictional slip of the fault interfacial surfaces) is attributed to this solid-to-fluid-like
transition. A fault system accumulates strain energy during inter-seismic periods, known as the “stick” phase,
and a “slip event” corresponds to an earthquake [1–3]. The stick-slip dynamic regime of a sheared granular
layer is controlled by mechanical and physical properties of the layer, including its confining pressure and
shearing velocity [4,5]. The intrinsic stick-slip dynamics of a granular layer can be perturbed by external
factors including boundary vibrations. Laboratory-scale observations as well as Discrete Element Method
(DEM) simulations show and confirm that mechanical and acoustic vibrations with adequate amplitudes can
change the mechanical and frictional properties of a confined and sheared granular layer and consequently
its macro-scale response [6–12]. Many aspects of these vibration-induced changes, including its grain-scale
mechanisms, its dependence on the loading state of the granular layer and on the vibration amplitude are
unexplored. Understanding and characterizing the effects of boundary vibration is of importance since at a
larger scale, numerous observations show that seismic waves, radiated by an earthquake can trigger earthquakes
at other mature faults both near and far away from the original one [13–18]. This observed phenomenology
is termed Dynamic Earthquake Triggering (DET) [19], and its physical origin is thought to be related to the
frictional evolution of the granular fault gouge layer.

We recently investigated the role of boundary vibration on slip triggering by analyzing the affine and non-
affine deformation fields [20,21] inside the granular layer and their spatial-temporal evolution [22,23]. The
vibration amplitude is shown to have significant influence on the size of triggered slip events in a 2D DEM
model of a sheared granular layer [24].

Here, we will present results of a 3D DEM numerical simulation of a confined sheared granular layer
subjected to boundary vibration. The goal of this investigation is to understand the influences of boundary
vibration amplitude and the time location of its application on the immediate frictional weakening of the
granular layer. To this end, we have applied vibration at various temporal locations during the granular layer
dynamics. In one case, the dynamics is of stick-slip type. In the second case, the granular layer is steadily
sliding. The paper is structured as follows: first, we introduce our numerical modeling approach and the model
geometry. Then, an example of vibration-induced frictional weakening is given and the grain contact evolution
of the granular layer is studied in correspondence of the friction drop induced by vibration. The influences of
the vibration amplitude and the shear stress level at which the vibration is applied on the size of the frictional
weakening event are investigated finally.

2 Model description

Figure 1 shows the geometry of the 3D DEM model fault gouge layer. The model consists of three sets of
particles: a top driving block, a mirroring substrate block and a granular gouge layer. The driving and substrate
blocks are used to confine the granular gouge by applying a constant normal force in the Y-direction. The top
set of particles of the driving block move with a prescribed velocity in the positive X-direction and applies a
shearing force to the granular gouge layer.

Each variable/parameter in our 3D DEM model is expressed in terms of the following basic dimensional
units: L0 = 150μm, t0 = 1 s and M0 = 1 kg, for length, time and mass, respectively. L0 represents the largest
particle radius within the overall DEM model.

The driving and substrate blocks are modeled as a system of spherical bonded particles and are each
comprised of two distinct layers. The first layer (top layer—brown colored particles—for the driving block
and bottom layer—red colored particles—for the substrate block) consists of a Hexagonal Close Packed (HCP)
arrangement of monosized particles with radius L0, while the second layer (roughness layer, dark and light
blue colored particles) consists of particles with radii distributed within [0.3; 1.0]L0. The particle assemblies
of the roughness layers were initially generated using a space-filling particle insertion method [25]. The driving
and substrate blocks have thickness of approximately 7.0L0 (

Thicknessroughness layer
ThicknessHCP layer

= 0.32). The HCP layers are
arranged to produce adequate rigidity for the interaction of the driving and substrate blocks with the granular
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Fig. 1 3D DEM model made of the driving block (top), granular gouge layer (center) and the substrate block (bottom). The
particle colors reflect different physical components of the layer (color figure online)
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Fig. 2 Particle size distribution of the roughness layer of driving block and substrate and the granular gouge layer

gouge layer. The roughness layers facilitate stick-slip dynamics by increasing the interaction of the granular
gouge with the driving and substrate blocks. In addition, the structure of the driving (substrate) block allows
for its dynamic interaction with the granular layer during shearing, a similar role to that played by tectonic
bounding blocks in a fault system.

The granular gouge layer includes a set of spherical, unbonded particles, and its initial assembly is generated
using the same space-filling particle insertion method used for the driving and substrate blocks [25]. The radius
of the granular gouge particles varies from 0.35L0 to 0.55L0 and corresponds to the size range, [105; 150]µm,
of the silica glass beads used as model fault gouge in laboratory shear experiments by Johnson et al. [26]. The
type of packing algorithm and the selected size range of the granular gouge particles result in a quasi-uniform
Particle Size Distribution (PSD). Figure 2 shows the PSDs of both the roughness and granular gouge layers.

The length of the system in the X direction is 70L0, while its thickness in the Z direction is 5.46L0. Periodic
boundary conditions are employed in the X direction. The two lateral sides of the medium in Z direction are
bounded by frictionless deformable walls with the same stiffness of the granular layer particles.

The interaction of the HCP with roughness layer particles is modeled by radial springs [27,28]. The inter-
particle radial force is Fr = Kr · �r . �r is the difference between the inter-particle distance and the sum of
the particle radii and Kr = 2.9775 × 107 M0 · t0−2 is the radial compressional/tensional spring stiffness. The
value of Kr is chosen based on a calibration procedure developed by Schoepfer et al. [25] to achieve a bulk
Young modulus in typical ranges of rock materials for the particle assembly [26,29]. The granular gouge layer
particles interact with each other and with the driving block/substrate particles via a repulsive Hookean spring
with radial and tangential components that represents normal (to the contact plane) and frictional forces,
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respectively [27,28]. The radial component has a spring stiffness Kr = 5.954 · 107 M0 · t0−2. The spring
stiffness of the tangential component is Ks = 5.954 · 107 M0 · t0−2 for all granular gouge particles. The
frictional interaction among the granular gouge particles is implemented similar to the model proposed by
Cundall and Strack [30]. The tangential contact force is chosen as the minimum value of Ks · �s and the
Coulomb threshold value μ · Fr , at each time step. μ is the friction coefficient between the two particles
surfaces and can be either static, μs , or dynamic, μd . We chose friction coefficient values of μs = μd = 0.4 to
produce a macroscopic frictional behavior corresponding to quartz sand aggregates. The frictional interaction
between the granular gouge particles and the roughness layers is modeled in the same way with the friction
coefficients of μstatic = μdynamic = 0.7. These values were adjusted based on a parametric study to enhance
the stick-slip behavior by increasing the frictional interaction in the interface of the two layers.

Each simulation run consists of two stages. During the first stage, the consolidation stage, no shear load is
imposed and the granular layer is compressed by the vertical displacement of both the driving block and the
substrate. The displacement continues until the applied normal stress on the granular layer equals the desired
value of the confining pressure, σn .

The second stage of each simulation run starts after the consolidation stage and consists in keeping the
normal load constant on the driving block while applying a constant velocity of VX,0 = 0.004 L0

t0
to the top

particles of the HCP layer of the driving block. The imposed velocity introduces a shear load to the granular
system. A ramp protocol is employed for gradually increasing the shear velocity from 0 to VX,0 [22–24].
We identified different regions in the σn − VX,0 parameter space where the system follows either a stick-slip
dynamics or is in steady-sliding mode. These two regimes are typical of dynamical regime for the granular
layer [31].

In the specific case of the perturbed runs, i.e., when external vibration is applied, an additional boundary
condition consists in imposing a displacement in the Y direction for the bottom particles of the substrate. The
temporal displacement of this boundary displacement is modeled as

uY (t) = A · �t ·
[
∂ f

∂t

(
t, t ′, Tν, τ

) · cos
(
ω(t − t ′) − π

2

)

− ω · f
(
t, t ′, Tν, τ

) · sin
(
ω(t − t ′) − π

2

)]
, (1)

where

f
(
t, t ′, Tν, τ

) ≡ 1

2
·
[

tanh

(
t − t ′

τ

)
− tanh

(
t − (t ′ + Tν)

τ

)]
. (2)

In Eqs. (1) and (2), t = m ·�t , ∀ m = 0, 1, . . ., is discretized time and �t is the simulation time step. Equation
(1) represents a sinusoid with angular frequency ω = 2π · f0, with f0 = 1 kHz, whose amplitude is modulated
in time by a waveform with a Gaussian-like shape, given by Eq. (2). In Eq. (1), t ′ represents a phase shift term
for centering the temporal window of the vibration at different times during the stick-slip dynamics. τ = 0.01
and Tν = 0.02, in Eq. (2), play, respectively, the role of a rising/decaying time constant and width for the
displacement waveform. In Eq. (1), A is the the vibration peak amplitude value. Figure 3 shows an example
of the displacement waveform applied within the time interval [165.75; 165.85].

For the implementation of the model, we used the open source code ESyS-Particle, developed at and
maintained by the Earth Systems Science Computational Center of the University of Queensland, Brisbane,
Australia. ESyS-Particle solves Newton’s equations of motion for the center of mass of each particle are
solved by a first-order, explicit finite difference scheme and for the rotation angles about the center of mass
by a finite difference rotational leapfrog algorithm [32]. The finite difference time step �t = 15 × 10−6 is
small enough to guarantee numerical stability and to satisfy the sampling theorem for a vibration signal with
maximum frequency fmax = 2 × 105, which is approximately the maximum sound frequency of vibration in
the laboratory experiments by Johnson et al. [26].

3 Results

We define the macroscopic friction coefficient, μ, as the shear stress of the granular layer divided by its confining
stress, and we monitor its time variation to investigate the behavior of the granular layer. The total kinetic energy
of the granular layer is another variable that we use to investigate the state of the granular layer. The total
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Fig. 3 Example of the displacement imposed to the bottom layer of the substrate in the Y direction, uy , as an AC vibration source
at the boundary of the system. It represents a harmonic oscillation at frequency f0 = 1 kHz with amplitude modulation given by
a Gaussian-like signal. The peak to peak amplitude of this AC displacement uy,P P = 4.0 · 10−5 L0 is quite small compared to
the largest particle size within the medium

kinetic energy of each j-th particle belonging to the granular layer, K j , is defined as K j = K trans
j + K rot

j ,
where K trans

j is the j-th particle translational kinetic energy and K rot
j is its rotational kinetic energy. We define

the total kinetic energy for the overall granular layer as Ktot ≡ ∑
j=1,...,M K j , with M the total number of

granular layer particles.
We performed simulations at two confining pressures of σn = 4 MPa and 40 MPa. The confining pres-

sure of σn = 4 MPa results in steady sliding of the sheared granular layer, while the confining pressure
of σn = 40 MPa shows stick-slip dynamics. Both of the confining pressures are in the range observed on
geological fault settings as well as in experimental setups (a few to a few hundreds MPas). The simula-
tions that are not exposed to any vibration are called “reference” run, while the simulations with vibra-
tion are called “perturbed” run. For each confining pressure, several separate (i.e. once for each perturbed
run) vibrations at different shear stress levels are applied. Different vibration amplitudes in the range
{1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400} · 10−7L0 are used at each vibration interval for
the two confining pressures. The response of the granular layer in the form of a frictional weakening during
boundary vibration is studied in detail in this article.

Figure 4 shows the friction coefficient and kinetic energy signals for the granular layer confined at σn = 4
MPa. The friction coefficient signal varies between 0.2 and 0.3 and shows some fluctuations corresponding to
small instabilities in the layer. The energy release of these friction coefficient fluctuations is a fraction of the
background (ambient) energy. We take this behavior to characterize the steady-sliding regime. The vibrations
(6 intervals) are applied at different shear stress levels and are shown as vertical dashed lines in this figure.
The Friction coefficient and kinetic energy signals for the granular layer at σn = 40 MPa are plotted in Fig. 5.
The friction coefficient signal varies between 0.1 and 0.3 and shows clear evidence of a stick-slip regime
characterized by series of long-lasting increases followed by sudden, fast drops. The kinetic energy jumps
during slip events are 2–3 orders of magnitude larger than the background (ambient) energy level. Therefore,
the behavior at confining pressure of σn = 40 MPa corresponds to regular stick-slip dynamics of the granular
layer. The vibrations (14 intervals) are applied at different shear stress levels and are shown as vertical dashed
lines in the figure.

Figure 6a shows an example of the friction coefficient time series, μ, for the reference (black line) and
the perturbed runs with a range of vibration amplitudes for σn = 40 MPa. The reference run time window
shows the stick phase of a large slip event happening at t = 248.7t0. The vibration interval is illustrated
with vertical dashed lines in the figure. This interval is also shown with a red marker in Fig. 5. Large enough
vibration amplitudes induce a reduction in the friction coefficient during the vibration interval. The reduction of
friction coefficient becomes more significant at larger vibration amplitudes. In addition, vibration amplitudes
of A ≥ 6 · 10−6L0 induce a noticeable clock advance of the upcoming large slip event in the perturbed runs
compared to the reference run, while amplitudes of A < 6 · 10−6L0 do not change the time of large slip event.
An in-depth study of this clock advance effect is not the scope of this article and will be investigated elsewhere.
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Fig. 4 Friction coefficient (top panel) and kinetic energy (bottom panel) signals for the reference run at σn = 4 MPa. Vibration
intervals are illustrated with vertical dashed lines

Fig. 5 Friction coefficient (top panel) and kinetic energy (bottom panel) signals for the reference run at σn = 40 MPa. Vibration
intervals are illustrated with vertical dashed lines

The focus of this article is studying the weakening of the frictional behavior during the vibration interval that
we termed “frictional weakening event” in the rest of the article.

The kinetic energy signal for the reference and perturbed runs are shown in Fig. 6b (for vibration amplitudes,
A, < 6·10−6L0) and c (for A ≥ 6·10−6L0). The vibration interval is illustrated with vertical dashed lines and a
shadowed area. The kinetic energy signal attains a background value during the stick phase that corresponds to
the constant shearing of the dense granular layer. During large slip events, the kinetic energy abruptly increases
compared to the background level. This corresponds to a transfer of energy from the elastic potential energy to
the kinetic one. In the perturbed runs and during the vibration interval, the kinetic energy slightly and slowly
increases which corresponds to the frictional weakening event induced by the boundary vibration. A zoom
(of the vibration interval) is given in the inset of the kinetic energy signal in Fig. 6b. Vibration amplitudes of
A ≤ 1 ·10−6L0 produce only small fluctuations in the kinetic energy signal; therefore, we take A = 1 ·10−6L0
to be the threshold for inducing frictional weakening. The other larger vibration amplitudes induce frictional
weakening events that are completely visible in the kinetic energy signal. The increase in the kinetic energy
corresponding to these frictional weakening events develops more slowly and is noticeably smaller compared
to regular slip events.

To track the boundary vibration effect at the grain scale, we show in Fig. 7c the ratio of the number of
slipping to sticking contacts, Rs , in the granular gouge layer for the reference and perturbed runs for different



Effect of boundary vibration on the frictional behavior of a dense sheared granular layer

(a)

(b)

(c)

Fig. 6 Macroscopic signatures of the effect of increasing vibration amplitudes: time series of a friction coefficient, b total
kinetic energy (for small vibration amplitudes, A < 6 · 10−6 L0), and c total kinetic energy (for larger vibration amplitudes,
A ≥ 6 · 10−6 L0). The vibration interval is indicated by vertical dashed lines and shadowed area in all panels. This interval is
also shown with a red marker in Fig. 5 (color figure online)

(a) (b) (c)

Fig. 7 a Friction coefficient time series, b Kinetic energy time series, c Ratio of slipping to sticking contacts for the reference
and perturbed runs. The arrow indicates the increase in the vibration amplitude. The colormap is the same that is used in Fig. 6
and the black line corresponds to the reference run. The time-span in the figure corresponds to the vibration interval (color figure
online)

vibration amplitudes. Panels (a) and (b) of Fig. 7 show friction coefficient and kinetic energy time series during
the vibration interval. Slipping contacts are those contacts that reach the grain-scale dynamic friction, μdynamic,
while sticking contacts are those that are still in the grain-scale static friction, μstatic. The time span of Fig. 7
corresponds to the vibration interval. The evolution of Rs starts immediately upon the vibration application;
therefore, it starts even with quite small boundary perturbations. Additionally, the increase in Rs starts earlier
(within the rising time of the vibration signal) than the kinetic energy signal. The time lag between these two
(the increase in Rs and evidence of frictional weakening in the kinetic energy signal) is due to the fact that an
increase in Rs larger than a certain limit is essential for the mobilization of grains and releasing measurable
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Fig. 8 Friction coefficient drop as a measure of the frictional weakening event size for two different confining pressures of σn = 4
and 40 MPa and different vibration amplitudes. Different lines for each confining pressures refer to the different shear stress levels
where the vibration is applied

energy. The Rs reaches a maximum at about the peak of the vibration displacement signal. A profound increase
in Rs is observed for large vibration amplitudes, A ≥ 6 ·10−6L0, while there is no significant change of Rs for
A ≤ 1 · 10−6L0. This indicates that vibration amplitudes larger than a threshold cause an irreversible change
in the contact networks in the form of significant amount of grain contact rearrangement. The result of this
irreversible evolution is the frictional weakening of the layer.

The decreasing trend continues until the end of the vibration interval. Except for A ≤ 1 · 10−6L0, the Rs ,
at the end of the vibration interval, goes below its initial value before that vibration applied. This is due to the
decrease in the friction coefficient level of the granular layer which itself was induced by the evolution of grain
contact network. The boundary vibration influence appears to be longer-lived in the contacts network than in
the kinetic energy signal.

In the next two sections, we present results on the influence of the vibration amplitude and the shear stress
level the vibration is applied on the size of the frictional weakening events. The drop in the friction coefficient
is used as a measure of the event size. We use the total released kinetic energy as a measure of the event size.
The total released kinetic energy during an event, E , is defined as E = ∑N

i=1(Ktot − Ktot,0) · γ̇ · �t . Ktot,0 is
the background value of Ktot in the reference run. γ̇ is the shear strain rate of the driving block, calculated as
the temporal derivative of the ratio between the driving block top layer’s displacement and the granular layer
thickness. �t is the simulation time step. The sum is performed over the total number of continuous values of
Ktot during the frictional weakening event (within the vibration interval).

3.1 Effect of vibration amplitude

Figure 8 shows the drop in friction coefficient associated with frictional weakening events for different vibration
amplitudes. A clear observation is that the friction drop size increases by increasing the boundary vibration
amplitude. In addition, we could not see any measurable (beyond fluctuation) change in the friction coefficient
signal for vibration amplitudes of A ≤ 1 · 10−6L0. The friction drop increases when vibration is applied at a
higher shear stress level.

The kinetic energy release of the frictional weakening events for different vibration amplitudes is presented
in Fig. 9. A larger vibration amplitude results in larger energy release. This fact is not the simple consequence
of a direct transfer of energy from the vibration source to the friction drop events. Indeed, we calculated the
amount of work done to the granular layer by the boundary vibration and determined that it is in the order of
10−5 to 10−2 of the released kinetic energy. This indicates that the increase in the released kinetic energy does
not simply mirror the increase in the energy input into the system by the applied vibration but it mirrors an
increase in the vibration efficiency in unlocking the particle contacts and facilitating particle rearrangements
and mobilizations. There are fewer fluctuations in the amount of kinetic energy release at different shear
stress levels as the vibration amplitude increases. Furthermore, vibration amplitudes of A ≤ 1 · 10−6L0 and
A ≤ 5 · 10−7L0 do not induce a measurable energy release for the confining pressures of σn = 40 and 4 MPa,
respectively.
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Fig. 9 Total kinetic energy release as a measure of the frictional weakening event size for two different confining pressures of
σn = 4 and 40 MPa and different vibration amplitudes. Different lines for each confining pressures refer to the different initial
shear stress levels where the vibration is applied

Fig. 10 Friction coefficient drop as a measure of the frictional weakening event size for the simulations at σn = 4 and 40 MPa.
The results correspond to the three largest vibration amplitudes

3.2 Effect of shear stress level

We investigate in this section the influence of the shear stress level at which the vibration is applied. Figure 10
shows the friction coefficient drop associated with the friction weakening events versus the shear stress level
for the three largest vibration amplitudes. The figure shows that for both of the confining pressures, the friction
drop size of the friction weakening event is on average larger at higher shear stress level. The influence of the
shear stress level is more significant for simulation at σn = 4 MPa, which is due to the fact that the medium
at this pressure is more mobile and easier to perturb. Furthermore, large vibration amplitudes increase the
influence of the shear stress level on the size of frictional weakening event for simulations at σn = 40 MPa,
while they have no significant effect in this sense on the size of frictional weakening events for simulations
at σn = 4 MPa. This difference could be due to the way the vibration displacement and the confining stress
control are implemented in our simulations. After the consolidation stage is finished, the confining stress is
only controlled via the upper boundary, to avoid its interference with the vibration displacement applied via
the lower boundary.

As a last point, Fig. 11 shows the kinetic energy release versus the shear stress drop of all friction weakening
events. It appears that the kinetic energy release is proportional to the shear stress drop squared, irrespective
of the confining stress of the granular layer. The scaling of kinetic energy release with the stress drop is in
agreement with the slip-weakening friction law prediction [33–35].

4 Discussions

We showed that the ratio of slipping to sticking contacts, Rs , increases significantly in correspondence of
large vibration amplitudes and allows for noticeable grain contact network rearrangements. These induced
rearrangements enhance particles mobilization and cause frictional weakening and kinetic energy release. This
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Fig. 11 Variation of the total kinetic energy release with the associated shear stress drop drop for frictional weakening events for
two confining pressures of σn = 4 and 40 MPa

observation is consistent with the proposed hypothesis by Jia et al. about the evolution of the contact network in
the presence of appreciable acoustic perturbation where the granular medium arrives at an irreversible regime
and elastic weakening occurs as a result of the sound–matter interaction [11]. Furthermore, we showed that an
amplitude threshold exists for triggering of frictional weakening events and this threshold is larger for higher
confining stresses. This is also in agreement with the recent experimental observation by Jia et al. where they
found that the acoustic fluidization threshold increases by increasing the confining pressure of the granular
medium [11].

We showed in Fig. 6d that the frictional weakening events are much smaller and slower than regular
large slip events in our numerical simulation. This makes them similar to the experimental “slow slip” events
observed in the laboratory by Johnson et al. [36]. The amplitude dependence of frictional weakening events
size is further in accordance with their experimental observations [36].

5 Conclusion

We have studied the vibration-induced frictional weakening phenomenon in a dense sheared granular layer by
3D discrete element method (DEM) modeling. The frictional weakening was evaluated based on its associ-
ated friction coefficient drop as well as its kinetic energy release. We found that the friction coefficient drop
and the kinetic energy release scale with the vibration amplitude, i.e. a larger vibration amplitude results in
larger frictional weakening events. The ratio of slipping to sticking contacts is used to explain the grain-scale
mechanism of the frictional weakening phenomenon. This ratio increases significantly in correspondence of
large vibration amplitudes and allows for noticeable grain contact network rearrangements, particle mobiliza-
tion and consequently kinetic energy release. In addition to characterizing the physics of vibration-induced
weakening, a primary goal of this study is to advance the understanding of the physics of the dynamic earth-
quake triggering (DET) phenomenon. The existence of a threshold for the vibration amplitude below which
no appreciable grain contact network rearrangement and immediate frictional weakening occurs and therefore
has no significant influence on the upcoming large slip event is in agreement with the laboratory (Johnson et
al. [36]) and field-scale (Gomberg and Johnson [37]) observations for DET.
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